Pozelimab, a Human Antibody Against Complement Factor C5, Demonstrates Robust Inhibition of Alternative Complement Activity Both in Normal Human Serum and in Phase I Normal Healthy Volunteers

Kishor Devalaraja-Narashimha, Yan G. Ni, Cong Huang, Ming-Dauh Wang, Umesh Chaudhari, Srinivasa Prasad, Olivier Harari, Andrew J. Rankin, Lori Morton, Jonathan Weyne Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA

Background and Introduction

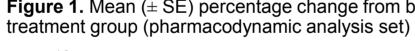
- Blockade of complement factor C5 has demonstrated benefit in paroxysmal nocturnal hemoglobinuria,¹ atypical hemolytic uremic syndrome,² generalized myasthenia gravis,³ and neuromyelitis optica.⁴
- We have completed a phase I study of pozelimab, a fully human anti-C5 immunoglobulin G4 (IgG4), in healthy volunteers (NCT03115996).⁵
- Pozelimab was well tolerated and resulted in dose-dependent inhibition of hemolytic activity through the classical complement pathway in normal healthy volunteers.⁵
- Complete inhibition of classical pathway hemolytic activity was maintained over a 4-week dosing period by a weekly subcutaneous (SC) regimen following an intravenous (IV) loading dose.⁵

Objectives

- To further characterize the impact of pozelimab on the activity of the alternative complement pathway, we investigated the effect of pozelimab on alternative pathway-mediated hemolysis using an AH50 assay in the completed first-in-human (FIH) study.⁵
- In addition, we compared the effect of pozelimab in both alternative and classical pathway hemolysis assays with those of in-house eculizumab and in-house ravulizumab in pooled normal human serum (NHS) samples, ex vivo.

Methods

- In total, 56 subjects were randomized (42 received pozelimab; 14 received placebo) to 4 sequential ascending IV single-dose cohorts plus 2 sequential ascending SC single-dose cohorts followed by 1 multiple-dose cohort (consisting of an IV loading dose and weekly SC doses).
- Each cohort consisted of 8 subjects randomized to receive pozelimab or placebo (6 active; 2 placebo). Serum collected at multiple time-points was used to assess the effect of pozelimab on alternative pathway activity.
- In the FIH study, the alternative pathway (AP) and classical pathway (CP) hemolysis assays were performed based on lysis of rabbit red blood cells (RBCs) and sensitized sheep RBCs, respectively; both assays measure the amount of hemoglobin released from RBCs at 412 nm.
- The pharmacodynamic analysis set included all treated subjects who received any study drug and who had at least 1 non-missing analyte measurement following the first dose of study drug.
- For *ex vivo* spike experiments, pooled NHS was used to compare the hemolytic function of pozelimab, in-house eculizumab and in-house ravulizumab (in-house eculizumab and in-house ravulizumab were synthesized from published sequences).
- Pozelimab, in-house eculizumab, and in-house ravulizumab were spiked into 10, 25, or 48% pooled NHS for AP hemolysis assays, and into 5, 10, or 25% pooled NHS for CP hemolysis assays.
- The effect of magnesium concentration $(0, 1, 2, and 4 \text{ mM MgCl}_2)$ on AP hemolysis assays was conducted in 10% NHS.


Results

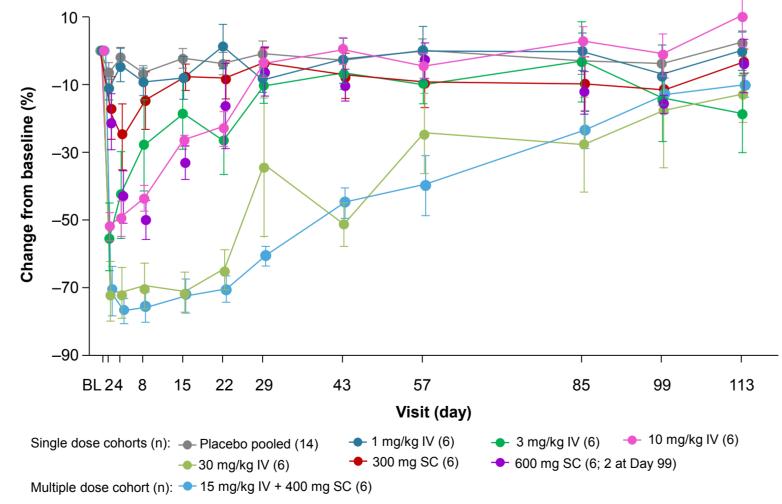
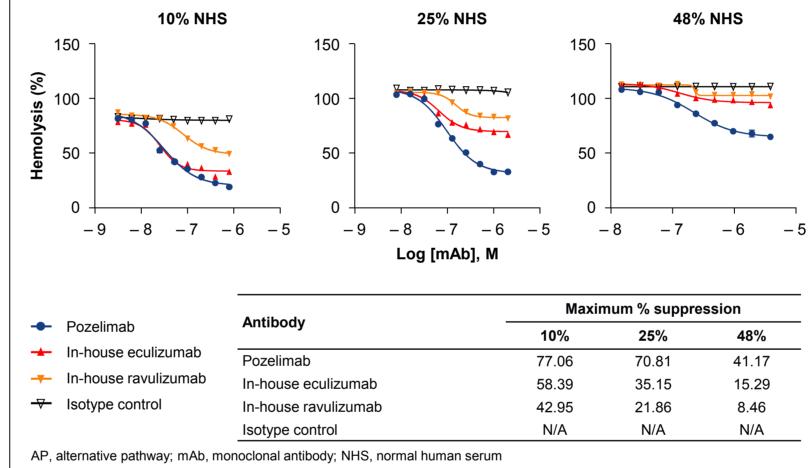

- Baseline characteristics of subjects in the FIH study are summarized in
 Table 1 according to treatment group.
- In the FIH study, baseline AH50 was comparable across treatment groups, with a mean \pm standard deviation (SD) of 110 \pm 19 U/mL (n=56).
- Pozelimab exposure led to dose-dependent inhibition of AH50 (Figure 1). In all 4 IV dosing cohorts, peak suppression of hemolysis was observed at the end of the infusion.

Table 1. Baseline characteristics (sa

			Pozelimab					
	Placebo ^a (n=14)	1 mg/kg IV (n=6)	3 mg/kg IV (n=6)	10 mg/kg IV (n=6)	30 mg/kg IV (n=6)	300 mg SC (n=6)	600 mg SC (n=6)	15 mg/kg + 400 mg SC ^b (n=6)
Age, years, mean (SD)	36.5 (8.9)	35.5 (7.1)	36.7 (10.7)	39.3 (12.1)	35.3 (12.3)	24.5 (4.1)	32.5 (9.1)	40.0 (6.8)
Male, n (%)	9 (64.3)	2 (33.3)	3 (50.0)	3 (50.0)	1 (16.7)	3 (50.0)	2 (33.3)	2 (33.3)
Race, n (%)								
White	12 (85.7)	4 (66.7)	4 (66.7)	5 (83.3)	6 (100)	5 (83.3)	4 (66.7)	5 (83.3)
Black or African American	2 (14.3)	1 (16.7)	1 (16.7)	1 (16.7)	0	0	1 (16.7)	0
Asian	0	0	0	0	0	1 (16.7)	1 (16.7)	1 (16.7)
Other	0	1 (16.7)	1 (16.7)	0	0	0	0	0
Weight, kg, mean (SD)	73.9 (10.7)	69.9 (16.8)	67.8 (8.6)	68.8 (12.7)	64.5 (3.1)	74.7 (11.6)	75.5 (21.1)	71.2 (6.7)

^aPool of all administration types. ^bMultiple dose study drug administration given as single dose of 15 mg/kg IV + 400 mg SC once weekly for 4 weeks. IV, intravenous; SC, subcutaneous; SD, standard deviation.

BL, baseline; IV, intravenous; SC, subcutaneous; SE, standard error.


Maximal suppression of hemolysis was approximately -85% change from baseline. This was achieved with the 30 mg/kg IV group and the repeatdose 15 mg/kg IV + 400 mg SC once weekly group. In the 2 SC cohorts, peak suppression of hemolysis was observed 3–7 days post dosing, which was consistent with observed peak concentrations of pozelimab in serum.

afetv	analysi	s set)
arciy	anaiyəi	S SEI)

Figure 1. Mean $(\pm SE)$ percentage change from baseline in AH50 versus nominal time by

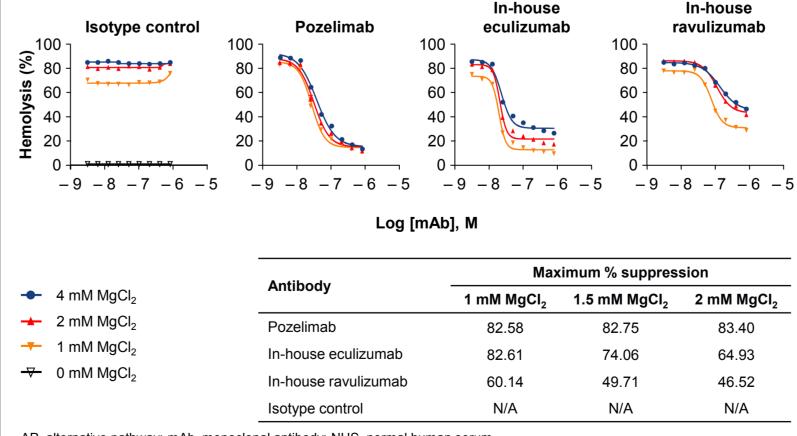
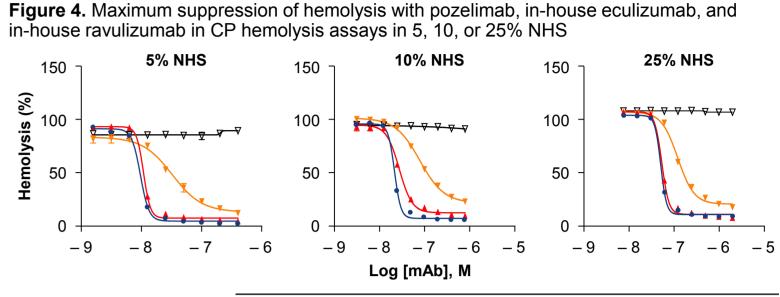

- The *ex vivo* AP hemolysis assays showed that, for a given concentration of spiked antibody, the maximal suppression of hemolysis for all the antibodies decreased with increased percentage of serum (Figure 2).
- The maximal suppression of hemolysis was consistently greater (32–169%) for pozelimab than for either in-house eculizumab or in-house ravulizumab. In-house ravulizumab had less suppression than pozelimab and in-house eculizumab at all serum percentages tested (Figure 2).
- Increasing magnesium concentration decreased the percentage maximum suppression of AP hemolysis for in-house eculizumab and in-house ravulizumab, but not for pozelimab (Figure 3).
- The results from CP hemolysis assays showed that, although the maximal suppression of hemolysis was similar across all NHS concentrations for all antibodies tested, in-house ravulizumab was required to be at least a log higher in concentration to achieve a similar effect as the other 2 anti-C5 antibodies (Figure 4).
- The binding kinetics of all 3 anti-C5 antibodies are presented in **Table 2**.

Figure 2. Maximum suppression of hemolysis with pozelimab, in-house eculizumab, and in-house ravulizumab in AP hemolysis assays in 10, 25, or 48% NHS

- Pozelimab	Antibody	10%	25%
In-house eculizumab	Pozelimab	77.06	70.81
In-house ravulizumab	In-house eculizumab	58.39	35.15
- ✓ Isotype control	In-house ravulizumab	42.95	21.86
	Isotype control	N/A	N/A


Figure 3. Effect of increasing magnesium concentration on maximum suppression of hemolysis with pozelimab, in-house eculizumab, and in-house ravulizumab in AP hemolysis assavs in 10% NHS

AP, alternative pathway; mAb, monoclonal antibody; NHS, normal human serum.

In-house

N/A	
46.52	
64.93	
83.40	

	Antibody	Maximum % suppression			
- Pozelimab	Antibody	5%	10%	25%	
In-house eculizumab	Pozelimab	95.05	92.83	89.24	
	In-house eculizumab	92.23	87.15	89.31	
In-house ravulizumab	In-house ravulizumab	84.41	78.84	80.45	
→ Isotype control	Isotype control	N/A	N/A	N/A	

CP, classical pathway; mAb, monoclonal antibody; NHS, normal human serum.

Table 2. Binding kinetics of pozelimab, in-house eculizumab, and in-house ravulizumab with C5

Antibody	25°C		37°C		
	К _D (М)	t _{1/2} (min)	К _D (М)	t _{1/2} (min)	
Pozelimab	1.37E-10	167	3.50E-10	58	
In-house eculizumab	2.73E-10	226	8.14E-10	57	
In-house ravulizumab	1.07E-08	8	5.52E-09	6	
Isotype control	_	_	-	_	

 K_D , dissociation constant; $t_{1/2}$, half-life

Conclusions

- The phase I healthy volunteer study of pozelimab demonstrated dosedependent and significant inhibition of AP hemolysis, with the maximal suppression of hemolysis approximately -85% change from baseline.
- Ex vivo studies with pooled NHS demonstrate that pozelimab robustly blocks both CP and AP hemolysis.
- In-house ravulizumab appeared to be less effective than in-house eculizumab in both CP and AP hemolysis assays.
- Although pozelimab and in-house eculizumab demonstrated similar effectiveness in CP hemolysis assays, pozelimab showed greater maximal suppression in AP hemolysis assays.
- As expected, all 3 antibodies provided stoichiometric inhibition of CP hemolysis; however, stoichiometric inhibition was not observed for AP hemolysis.

References

1. Brodsky RA. *Blood*. 2014;124:2804–2811; 2. Noris M, Remuzzi G. *N Engl J Med*. 2009;361:1676–1687; 3. Dalakas MC. *Nat Rev Neurol*. 2019;15:113–124; 4. Pittock SJ et al. *N Engl J Med*. 2019;381:614–625; 5. Weyne J et al. *Blood*. 2018;S1:1039.

Acknowledgements

This study was funded by Regeneron Pharmaceuticals, Inc. Editorial support was provided by Prime, Knutsford, UK, and was funded by Regeneron Pharmaceuticals, Inc.

Disclosures

All authors are employees of and stockholders in Regeneron Pharmaceuticals, Inc.

Presented at the American Society of Hematology 61st Annual Meeting 2019, December 7–10, Orlando, FL, USA